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ABSTRACT
GPS positioning devices are becoming a commodity sensor plat-
form with the emergence and popularity of smartphones. This
abundance of GPS trajectories has fueled significant research around
map-matching and related applications such as traffic assessment
and prediction. Unfortunately, this research has only been used in
costly and complex fleet management solutions. Our latest research
endeavor addresses this issue by presenting cost-effective solutions
for adapting state-of-the-art research around map-matching and live
traffic assessment in the context of fleet management applications.
This paper showcases various research results wrapped in a single
extensible fleet management platform.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Spatial
databases and GIS; H.3.5 [Information Storage and Retrieval]:
Online Information Services—Web-based services

General Terms
Design
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1. INTRODUCTION
GPS positioning devices are becoming a commodity sensor plat-

form with the emergence and popularity of smartphones and portable
tablets. This abundance of usually low-sampling-rate (e.g., one
point every 1-5 minutes) GPS trajectories have lead to significant
increase in research activities around map-matching, the process of
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aligning a sequence of observed user traces to the underlying road
network graph. Still at this moment, practical uses of this research
have only been considered in costly and complex fleet management
applications. On a quite similar note, novel shortest-path (SP) algo-
rithms (by relying in extensive preprocessing of the road network
graph) may answer SP queries in continental networks in few µs.
Unfortunately, those algorithms are not efficiently tuned for han-
dling live traffic updates, such as those produced by the aforemen-
tioned map-matching algorithms.

Our latest effort in [16] tries to address these shortcomings by
creating an efficient infrastructure for low-cost fleet management
solutions. The core components of our system (referred hereafter
as the SimpleFleet service) include (i) a collection mechanism for
vehicle tracking data, i.e., Floating Car Data, (ii) a map-matching
algorithm that relates the vehicle trajectories to an underlying road
network and allows us to derive travel times in relation to the road
network, (iii) an efficient data aggregation mechanism to derive
speed profiles for the road network, (iv) a shortest-path algorithm
that takes live traffic conditions and, hence, actual travel times into
account and (v) a visualization platform to interact with the system
and visualize traffic conditions based on traffic maps and isochrones.

The outline of this work is as follows. Specific scientific innova-
tions and a description of available system services is presented in
Section 2. Section 3 describes the SimpleFleet service architecture
and implementation. Section 4 presents the Web interface used to
access (a subset) of the implemented fleet management functionali-
ties. Section 5 presents some performance numbers and discussing
possible system loads. Finally, Section 6 gives conclusions and di-
rections for future work.

2. SERVICES
Implementing a fleet management infrastructure requires a cer-

tain number of services, i.e., data collection and management meth-
ods as well as map-matching and shortest-path algorithms. What
follows is a description of these services and the respective innova-
tions that were needed for their efficient implementation.

2.1 Data Collection
Essentially, we are dealing with two data sources. One is the ac-

tual road network (graph), which in the our case is based on Open-
StreetMap data. Since in our system we are dealing with specific
geographic areas, we converted OSM data to a routable road net-
work graph, of which we finally used its largest strongly connected
component. Strong connectivity is a necessary requirement for the



map-matching and routing algorithms used in the following. The
second dataset we have to collect is the actual vehicle tracking data.
Here, we created an efficient mechanism for collecting and storing
considerable amounts of Floating Car Data (FCD) from fleet vehi-
cles. For each urban area covered by our system, we are typically
dealing with 2,000-5,000 vehicles producing a data point (GPS po-
sition sample) every 60 -180s.

2.2 Travel Time Derivation
Aligning the collected GPS traces to the road network graph

requires state-of-the-art map-matching (MM) algorithms. In our
framework we use the Fréchet-distance-based curve matching al-
gorithm of [2, 17] and the [11] implementation of the ST-matching
algorithm [12]. Still, we had to significantly enhance both imple-
mentations to handle FCD streams. In our approach we divide the
incoming FCD stream to five minutes intervals, in order to create
small trajectories and then performed map-matching on those small
subsequences to obtain partial paths and travel time information.

Then we had to aggregate map-matching results per edge for the
same interval (5min) to provide live traffic assessment information.
Map-matching results were also aggregated on a monthly basis per
edge, weekday, hour and quarter-of-an-hour to build historic speed
profiles for providing traffic information for areas where no live
traffic data is available.

2.3 Shortest-Path Computation
The combination of live traffic and speed profiles is used to pro-

vide dynamic shortest-path (SP) computation. We developed an op-
timized version of the unidirectional “Eager Dynamic” [3] variant
of the ALT (A∗ + Landmarks + Triangle equality) [9] algorithm.
We significantly improved the preprocessing time and SP query
performance of the specific algorithm and make it thus suitable for
a dynamic navigation scenario, i.e., considering live traffic updates
in shortest-path results. We focused our attention on the ALT algo-
rithm, since (i) it is very robust with respect to the metric used [9],
(ii) it requires no path unpacking (producing the actual road net-
work path of the shortest route), and (iii) its storage requirements
and auxiliary data structure size depend solely on the number of
landmarks (and not on the utilized metric). We avoided using hier-
archical approaches, such as Contraction Hierarchies [8], because
the required shortcut edges need to be re-computed at every batched
edge-weight update. Hence creating and dropping shortcuts every
five minutes was an additional overhead we needed to avoid. More-
over, the use of shortcuts makes path-unpacking slower, since in our
case the full path needs to be returned to the user.

By proposing a novel and efficient landmark selection strategy
and expanding several optimization strategies of [6], [7], we man-
aged to lower the preprocessing time of the ALT algorithm from
several minutes [3] to a few seconds. Moreover, we have also im-
proved its query phase and tripled its unidirectional performance
while also improving bidirectional performance by 44%. Although
we did not alter the actual algorithm, our engineering efforts sig-
nificantly broadened ALT’s entire scope, since (i) its preprocessing
is now fast enough for supporting dynamic road networks with fre-
quent traffic updates and (ii) the algorithm is now fast enough to
support real-time SP queries for global scale mapping services. For
more details on our optimizations for ALT refer to [5].

Although there were some previous shortest-path research works
[13] also using OpenStreetMap data for creating the road network
graph, they did not have access to live traffic information, as our
work does. This is a huge advantage of our approach, since sim-
ilar to major services like Google and Bing Maps, we are able to
suggest the best route according to current live traffic conditions.

2.4 Isochrone Computation
Another important focus of our work was to provide novel and

innovative ways to visualize and represent traffic situation in urban
areas. A crucial tool for this effort is the concept of isochrones.
Isochrones are defined in [1] as the “set of all points from which
a specific point of interest is reachable within a given time span”.
Although our service is mainly aimed towards fleet management,
isochrones are equally important within other contexts, such as ge-
omarketing (e.g. where a new franchise store should be opened) or
urban planning (e.g. where a hospital should be built to accommo-
date uncovered city areas). Another paper relative to our work was
[14], since it was the first to claim that the whole spatial area cov-
ered by an isochrone is important and introduced the “Edges’ Hull”
algorithm which creates a single area composed of the outermost
edges of the isochrone network. This approach offers increased ac-
curacy in comparison to previous, typical convex hull approaches.

Although isochrones have been used before in public transport
and walking combinations [1], to the best of our knowledge we are
the first to combine the state-of-the-art isochrone computation of
[14] with live traffic data, in addition to providing this real-time
system showcasing our results.

Moreover, in our recent work of [4] we have already combined
the acquired live traffic isochrone computation with demographic
data to demonstrate the impact of traffic fluctuations in a geomar-
keting context. There, one can see in a quantitative way that the
influence of live traffic information is considerably important, espe-
cially in heavy traffic conditions. Hence, the live traffic isochrones
introduced for the first time here, may be extremely useful for
many, seemingly unrelated, scientific areas.

3. SYSTEM IMPLEMENTATION
The product of the aforementioned processes/innovations is the

SimpleFleet service which consists of several components - virtual
machines (VMs) that interconnect and cooperate (Fig. 1). The
various components are described in the following.

Figure 1: The SimpleFleet service



Figure 2: TrafficStore functionality

All SimpleFleet system VMs are hosted in õkeanos [15] IaaS
(Infrastructure as a Service) platform of the Greek Research and
Technology Network. õkeanos is a cloud service comparable to
Amazon Elastic Compute Cloud (EC2) making a potential migra-
tion of our entire architecture to such a commercial service simple
and seamless.

3.1 TrafficStore
The TrafficStore is the major key component of the SimpleFleet

system for storing all available input and output data. Therefore all
additional services are built on top of it. TrafficStore is a complete,
integrated data management system for the traffic data pool. It is
implemented using a PostgreSQL / PostGIS DBMS. The data man-
agement functionality includes FCD collection, map-matching, com-
putation of live traffic assessment and speed profiles. A separate
TrafficStore instance is set up for each urban area covered by our
system. Currently our service covers the cities of Athens, Berlin
and Vienna. Figure 2 gives an overview of the processes running in
the TrafficStore and their interactions.

3.2 Dedicated processing server
Dedicated processing servers are used to handle computations

in relation to user requests. Typically one server (VM) is used
per respective area. Such requests currently refer to (i) live traf-
fic shortest-path computation and (ii) calculation of isochrones (ar-
eas on the map that can be accessed within a given timespan). As
shown in Figure 1, each processing server communicates only with

Figure 3: The visualization server’s components

the TrafficStore repository of its respective city. This was a deliber-
ate choice, for ensuring maximum efficiency, isolation and scalabil-
ity. The services are accessed using a RESTful HTTP API utilizing
an Apache Tomcat server that can efficiently forward the requests to
optimized Java algorithms that typically respond in less than 50ms,
even for up to 500 concurrent users (see Sec. 5).

3.3 Visualization server
The visualization server supports the interactive Web front-end

of the system (Sec. 4). The underlying architecture exposes most
of its visualization functionality through APIs, allowing the service
to be also used by third-party Web applications.

The online interface is powered by a Ruby-on-Rails (RoR) ap-
plication and served via Apache through the Phusion Passenger li-
brary. This ROR application generates the main page that contains
the map, as well as the administration panel that is used to easily
monitor and alter configuration settings. All configuration settings
(data sources, styles) for supported cities and layers are stored in a
local Postgres database along with a collection of OSM resources
for generating the base map tiles.

The interactive map interface relies on the OpenLayers JavaScript
framework as front-end and the TileStache map tile caching server
as the back-end. TileStache is a lightweight web server that uti-
lizes the mapnik framework for converting vector data (stored in
PostGIS) to image tiles, adhering to certain style rules (colors, line
widths) specified in a CSS-like format. Figure 3 depicts how these
visualization server’s components interconnect and cooperate.

There is one common visualization server for all cities/urban ar-
eas covered by our system. In this way there is only one point of
entry to the entire SimpleFleet service, a fact that ensures increased
security and easier logging.

3.4 Expanding System Scope
The modularity of the first two components, i.e. the TrafficStore

and the dedicated processing server and the easy configuration of
the visualization server makes our system very easily extensible to
cover additional geographic areas. To do so, the first step would be
to prepare the respective TrafficStore for the new city. This essen-
tially means obtaining the OSM data for the new region and pre-
process it so that it can be used by the implemented algorithms for



Figure 4: The basic interface of the online demo

map-matching, shortest-path and isochrone computation. The sec-
ond step, involves cloning a dedicated processing server and con-
figure it to access data from the new TrafficStore. The third and
final step is to add the new area to the visualization server’s con-
figuration. This involves two major tasks: Initially we have to pre-
render the map tiles for the new region, a task similar to the setup
of the TrafficStore, in the sense that OSM data is being converted to
map tile images and then stored in a cache for faster access. Then
the new region may be added to the configuration via the available
administration panel; the basic set-up involves setting the URL of
the respective dedicated processing server and then choosing which
layers would be available for the newly added area.

4. WEB APPLICATION
The Web front-end of our SimpleFleet service features an in-

teractive “slippy map” interface that allows switching between the
available geographic areas covered by the system. For each area
the following data/services are available.

• Live-traffic map - visualization of traffic conditions, updated
every 5min
• Speed profiles - visualization of traffic trends to complement

live traffic assessment
• Traffic message channel alerts (TMCs available only for Berlin)
• Isochrones - based on live traffic
• Shortest-path routing - based on live traffic

In terms of data, the first two layers, i.e., live traffic and speed
profiles are available as map tiles (png images), while information
about the last three vector layers is available as JSON. From a ser-
vice point of view, the first three layers are directly accessible from
the TrafficStore, whereas isochrones and routing features are avail-
able from the respective dedicated processing servers (Sec. 3.2).

The three TrafficStore layers (live traffic, speed profiles, TMCs)
and the background road-map layer (the choices here are (i) the de-
fault black & white theme, Google Maps layer, and OSM layer)
may be independently activated by using the Layer drawer control
located at the right of the map interface. The remaining two vec-
tor layers (routing directions and isochrones) may be activated by
right-clicking anywhere on the map and selecting the appropriate
action from the displayed context menu.

To minimize network time, all vector data from either isochrone
or routing responses is returned in Google’s encoded polyline for-
mat [10] that achieves 90% compression. GZIP compression is also

Figure 5: Computing Isochrones

Figure 6: A sample route between an Origin and a Destination pass-
ing via a specified Waypoint

enabled, both on the the visualization and the processing servers, to
further reduce network latency.

4.1 Isochrones
The Web interface facilitates isochrone computation “from” (and

also “to”) any location on the map (context menu). The user may
either change the total traveled time (up to 30min) or the number
of isochrone areas returned (up to six). For visualization purposes,
each isochrone area has a different opacity with the smaller one be-
ing more opaque and the larger one being more transparent. Once
the isochrones have been drawn on the map, the starting (or end-
ing) marker may be dragged and dropped to a different location to
request new isochrones to be drawn.

In our default setting, six isochrones are returned and the overall
maximum travel time is set to 30 minutes. This means that each
isochrone’s maximum travel time is uniformly distributed in this
duration, i.e., the first one covers the area reachable in 5min, the
second one in 10min, etc. Figure 5 shows a tweaked example where
the user has requested 4 isochrones and the maximum travel time
for the largest one is set to 10min.



Figure 7: The administration panel

Figure 8: Flow diagram of a request for a map tile.

4.2 Routing
Similar to isochrone computation, routing requests may be com-

puted between any two locations selected on the map (context menu).
The server responds with a Google’s encoded polyline representa-
tion of the calculated path, along with the travel time computed for
this route and the total distance traversed. The travel info appears
as a balloon tip on top of the map, while the actual route is drawn.
Similar to massive online mapping services, the user may drag the
Origin and Destination markers or add/delete intermediate points to
a route. The origin marker (labeled A) and the destination marker
(labeled B) are both draggable and thus dragging them automati-
cally recomputes the path to match the altered location(s).

4.3 Traffic Messages
The TMC layer shows Traffic Message Channel (TMC) alerts

and is only available for Berlin. TMC alerts are short informative
messages which appear in the electronic road signs above major
roads. The user may click on the TMC icons and retrieve the cor-
responding message.

4.4 Administration
To help administer the service, i.e., add new cities and map lay-

ers, an online administration panel (available only to super users
via password authentication) was built (see Figure 7). The main
two data components available in this panel are areas and layers.
Each area corresponds to a separate city/region. Layers are used
for storing configuration parameters for the different type of data
we want to display in the map area of the online interface. The
configurations settings are stored in the local PostgreSQL database
of the visualization server.

The admin panel allows the super user to add new spatial areas
or hide/remove existing areas from the list of available ones via the
“Areas” section. An administrator may easily specify the URL of

the dedicated processing server that corresponds to each area, so
that all requests for that respective area will be accordingly routed
to the proper server. Similarly, one may also specify which layers
will be available for each area via the “Layers” configuration page.
This page allows a user to add or remove new layers, to enable or
disable existing layers or change a layer’s behavior such as enabling
or disabling caching for it. For image-based layers, the user has the
ability to specify the data-source (a specific TrafficStore instance)
along with the exact SQL query that will be used to fetch the results,
as well as the specific styling rules that will be used for displaying
the layer on the map. For example, for a traffic layer an example
query would be to fetch all the road segments that are currently
congested, i.e., have a travel time that indicates that vehicles are
moving on it at 25% or less of the normal road speed.

Dynamic Configurations. The main advantage of having all the
layer settings configurable via the admin panel is the ability to up-
date the layer settings on demand with minimum effort. In a classic
setup all the layer configuration such as the data-source to connect
to, the exact query to fetch the data and the list of styling rules to
apply when drawing the map tiles of that layer are saved in a static
XML file on the disk. If a setting changes, one would typically
have to log in to the server, edit and save the file, then restart the
tile server (TileStache). In our setup we use the “Dynamic Layer”
module provided by our tile server in order to read each layer’s con-
figuration from the visualization server the first time that a specific
layer is requested. Once a “never-seen-before” layer is requested,
an extra request is made to the visualization server to look up its
configuration and export it to the tile server using a HTTP request.
Figure 8 demonstrates the aforementioned scenario. The layer’s
configuration is then cached to boost performance. Since a typical
single page request contains (on average) around 30 image tiles,
it would be very inefficient to ask for the same configuration over
and over again. A small patch has been applied to this “Dynamic
Layer” module in order to allow this configuration to be updated
on demand, i.e. expire the cache.

Overall, the user may change any setting of any layer and then
use the link provided in the Dashboard section of the admin panel
to seed this new configuration to the tile server, forcing it to expire
any previously cached configuration and read the new settings from
the visualization server. This approach is especially helpful when
fine-tuning and testing new settings, e.g., trying out new map styles
or queries.

Snapshots. For image-based layers (live traffic and historic speed
profiles), the administration panel offers a “snapshot” functional-
ity which may be configured to run automatically at predefined in-
tervals or requested to run on demand. The “auto-snapshot” pro-
cess, which runs every 15 minutes, creates a zoom 11 snapshot of
the entire bounding box of the layer. The Snapshot screen lists
all the available stored snapshots, tagged with the time they were
taken. The user has the ability to filter the displayed snapshots by
layer and within a specified time range. The resulting snapshots
may additionally be viewed as a slide-show (movie) by clicking
the “Slideshow” button on the upper right corner (Fig. 9) creating
visualizations of traffic patterns.

5. PERFORMANCE
In order to test the SimpleFleet service’s performance, we used

the popular regression-test tool Apache JMeter. Apache JMeter
is an open-source Java desktop application designed to stress-test
functional behavior and simulate server load to analyze overall per-
formance under different load types.

In our test scenario we experimented with 500 concurrent users,
executing 60 mixed (for all cities) routing requests with a delay



Figure 9: Slideshow functionality of the administration panel

of 10s between requests to emulate realistic usage of the service,
i.e., each user sends a request and waits for the response before
proceeding to another request. Results showed that each of those
30,000 requests is answered in average time of 45ms. This clearly
shows that the minimal setting of our prototype architecture can
efficiently handle a significant number of concurrent users. Keep in
mind that those recorded times are dominated by network latency,
i.e., the time required for the actual response to be sent to the user.
The actual time required for calculating a shortest-path is typically
less than 5ms. After all, we aim at providing an infrastructure to
service a limited number of fleet management companies and not
on competing with well established global mapping services, such
as Google or Bing Maps.

6. CONCLUSION
This work describes a unified fleet management system in terms

of its available services, their implementation and an existing Web
interface. The latter is used to access certain functionality and
showcases example services such as traffic maps, shortest path and
isochrone computation based on collected Floating Car Data. Our
SimpleFleet system binds several web and server technologies to-
gether in order to provide a powerful and integrated platform that
provides extensibility and scalability. We have also described its
basic usage scenario, its administration panel, as well as its basic
performance for a significant number of concurrent users.

Despite its, we believe, strong characteristics, this prototype ap-
plication is still a work in progress. New services are being added
to our infrastructure and the modularity of its architecture allows
for the simple (comparatively) addition of new and probably more
impressive features. Therefore we believe that it will play a crucial
role in demonstrating SimpleFleet system’s huge potential.
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